Graded Betti Numbers of Ideals with Linear Quotients

نویسنده

  • LEILA SHARIFAN
چکیده

In this paper we show that every ideal with linear quotients is componentwise linear. We also generalize the Eliahou-Kervaire formula for graded Betti numbers of stable ideals to homogeneous ideals with linear quotients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

Betti strata of height two ideals

Let R = k[x, y] denote the polynomial ring in two variables over an infinite field k. We study the Betti strata of the family G(H) parametrizing graded Artinian quotients of R = k[x, y] having given Hilbert function H . The Betti stratum Gβ(H) parametrizes all quotients A of having the graded Betti numbers determined by H and the minimal relation degrees β, with βi = dimk Tor R 1 (I, k)i. We re...

متن کامل

Rigidity of Linear Strands and Generic Initial Ideals

Let K be a field, S a polynomial ring and E an exterior algebra over K, both in a finite set of variables. We study rigidity properties of the graded Betti numbers of graded ideals in S and E when passing to their generic initial ideals. First, we prove that if the graded Betti numbers β ii+k(S/I) = β S ii+k (

متن کامل

Componentwise Linear Ideals with Minimal or Maximal Betti Numbers

We characterize componentwise linear monomial ideals with minimal Taylor resolution and consider the lower bound for the Betti numbers of componentwise linear ideals. INTRODUCTION Let S = K[x1, . . . ,xn] denote the polynomial ring in n variables over a field K with each degxi = 1. Let I be a monomial ideal of S and G(I) = {u1, . . . ,us} its unique minimal system of monomial generators. The Ta...

متن کامل

Ju l 2 00 1 BOUNDS FOR BETTI NUMBERS

In this paper we prove parts of a conjecture of Herzog giving lower bounds on the rank of the free modules appearing in the linear strand of a graded k-th syzygy module over the polynomial ring. If in addition the module is Z n-graded we show that the conjecture holds in full generality. Furthermore, we give lower and upper bounds for the graded Betti numbers of graded ideals with a linear reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009